Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Pharmacol Physiol ; 48(1): 96-106, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32888350

RESUMO

Chronic low back pain (LBP) has high prevalence in the adult population which is associated with enormous disability. Hence, our aim was to further characterise our LBP rat model by using immunohistological and immunohistochemical methods at an advanced stage (day 49) of the model. Male Sprague-Dawley rats were anaesthetised and their lumbar L4/L5 and L5/L6 intervertebral discs (IVDs) were punctured (0.5 mm outer diameter, 2 mm-deep) 10 times per disc. Sham-rats underwent similar surgery, but no discs were punctured. For LBP- but not sham-rats, noxious pressure hyperalgesia was fully developed in the lumbar axial deep tissues on day 21 post-surgery, which was maintained until at least day 49. In the lumbar (L4-L6) dorsal root ganglia (DRGs), somatostatin (SRIF) and the somatostatin receptor type 4 (SST4 receptor) were co-localised with substance P and IB4, markers of small diameter unmyelinated peptidergic and non-peptidergic C-fibres respectively as well as with NF200, a marker of medium to large diameter neurons. On day 49, there was increased expression of SRIF but not the somatostatin receptor type 4 (SST4 receptor) in the lumbar DRGs and the spinal dorsal horns. There were increased DRG expression levels of the putative pro-nociceptive mediators: phosphorylated p38 (pp38) mitogen-activated protein kinase (MAPK) and phosphorylated p44/p42 MAPK (pp44/pp42 MAPK) as well as pp38 MAPK expression levels in the lumbar spinal cord. Taken together, the increased expression of SRIF in the lumbar DRGs and spinal cord and its co-localisation with nociceptive fibres in DRG sections suggest a potential role of SRIF in modulating chronic mechanical LBP.

2.
Biomed Pharmacother ; 117: 109056, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31181441

RESUMO

Chronic low back pain (LBP) ranks among the most common reasons for patient visits to healthcare providers. Drug treatments often provide only partial pain relief and are associated with considerable side-effects. J-2156 [(1'S,2S)-4amino-N-(1'-carbamoyl-2'-phenylethyl)-2-(4"-methyl-1"-naphthalenesulfonylamino)butanamide] is an agonist that binds with nanomolar affinity to the rat and human somatostatin receptor type 4 (SST4 receptor). Hence, our aim was to assess the efficacy of J-2156 for relief of chronic mechanical LBP in a rat model. Male Sprague Dawley rats were anaesthetised and their lumbar L4/L5 and L5/L6 intervertebral discs (IVDs) were punctured (0.5 mm outer diameter, 2 mm-deep) 10 times per disc. Sham-rats underwent similar surgery, but without disc puncture. For LBP-rats, noxious pressure hyperalgesia developed in the lumbar axial deep tissues from day 7 to day 21 post-surgery, which was maintained until study completion. Importantly, mechanical hyperalgesia did not develop in the lumbar axial deep tissues of sham-rats. In LBP-rats, single intraperitoneal (i.p.) injection of J-2156 (3, 10, 30 mg kg-1) alleviated primary and secondary hyperalgesia in the lumbar axial deep tissues at L4/L5 and L1, respectively. This was accompanied by a reduction in the otherwise augmented lumbar (L4-L6) dorsal root ganglia expression levels of the pro-nociceptive mediators: phosphorylated p38 (pp38) mitogen-activated protein kinase (MAPK) and phosphorylated p44/p42 MAPK and a reduction in pp38 MAPK in the lumbar enlargement of the spinal cord. The SST4 receptor is worthy of further investigation as a target for discovery of novel analgesics for the relief of chronic LBP.


Assuntos
Butanos/uso terapêutico , Dor Crônica/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Dor Lombar/tratamento farmacológico , Naftalenos/uso terapêutico , Receptores de Somatostatina/agonistas , Sulfonas/uso terapêutico , Animais , Butanos/química , Butanos/farmacologia , Modelos Animais de Doenças , Masculino , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Naftalenos/química , Naftalenos/farmacologia , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de Somatostatina/metabolismo , Sulfonas/química , Sulfonas/farmacologia , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Inflammopharmacology ; 2018 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-29754321

RESUMO

Globally, low back pain (LBP) is one of the most common health problems affecting humans. The lifetime prevalence of non-specific LBP is approximately 84%, with the chronic prevalence at about 23%. Chronic LBP in humans is defined as LBP that persists for more than 12 weeks without a significant pain improvement. Although there are numerous evidence-based guidelines on the management of acute LBP, this is not the case for chronic LBP, which is regarded as particularly difficult to treat. Research aimed at discovering new drug treatments for alleviation of chronic mechanical LBP is lacking due to the paucity of knowledge on the pathobiology of this condition, despite its high morbidity in the affected adult population. For a debilitating condition such as chronic LBP, it is necessary to assess the sustained effects of pharmacotherapy of various agents spanning months to years. Although many rodent models of mechanical LBP have been developed to mimic the human condition, some of the major shortcomings of many of these models are (1) the presence of a concurrent neuropathic component that develops secondary to posterior intervertebral disc puncture, (2) severe model phenotype, and/or (3) use of behavioural endpoints that have yet to be validated for pain. Hence, there is a great, unmet need for research aimed at discovering new biological targets in rodent models of chronic mechanical LBP for use in drug discovery programs as a means to potentially produce new highly effective and well-tolerated analgesic agents to improve relief of chronic LBP. On a cautionary note, it must be borne in mind that because humans and rats display orthograde and pronograde postures, respectively, the different mechanical forces on their spines add to the difficulty in translation of promising rodent data to humans.

4.
Front Pharmacol ; 8: 493, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28798688

RESUMO

Chronic low back pain (LBP), the leading cause of disability globally, is notoriously difficult to treat. Most rodent models of LBP mimic lumbar radicular pain rather than mechanical LBP. Here, we describe establishment of a new rat model of mechanical LBP that is devoid of a neuropathic component. Groups of adult male Sprague Dawley rats were anesthetized and their lumbar L4/L5 and L5/L6 intervertebral disks (IVDs) were punctured (0.5 mm outer diameter, 2mm-deep) 5 (LPB-5X), or 10 (LBP-10X) times per disk. Sham-rats underwent similar surgery, but without disk puncture. Baseline noxious pressure hyperalgesia of lumbar axial deep tissues, mechanical allodynia in the hindpaws and gait were assessed prior to surgery and once-weekly until study completion on day 49. The model was also characterized using pharmacologic and histologic methods. Good animal health was maintained for ≥ 49 days post-surgery. For LBP- but not sham-rats, there was temporal development of noxious pressure hyperalgesia in lumbar axial deep tissues at days 14-49 post-surgery. Importantly, there were no between-group differences in von Frey paw withdrawal thresholds or gait parameters until study completion. On day 49, significant histologic changes were observed in the L4/L5 and L5/L6 IVDs for LBP-10X rats, but not sham-rats. In LBP-10X rats, single bolus doses of morphine produced dose-dependent relief of primary and secondary mechanical hyperalgesia in lumbar axial deep tissues at L4/L5 and L1, respectively. In conclusion, our new rat model has considerable potential for providing novel insight on the pathobiology of mechanical LBP and for analgesic efficacy assessment of novel compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...